Graph diameter, eigenvalues, and minimum-time consensus

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graph diameter, eigenvalues, and minimum-time consensus

We consider the problem of achieving average consensus in the minimum number of linear iterations on a fixed, undirected graph. We are motivated by the task of deriving lower bounds for consensus protocols and by the so-called “definitive consensus conjecture” which states that for an undirected connected graph G with diameter D there exist D matrices whose nonzero-pattern complies with the edg...

متن کامل

Decentralised minimum-time consensus

We consider the discrete-time dynamics of a network of agents that exchange information according to a nearest-neighbour protocol under which all agents are guaranteed to reach consensus asymptotically. We present a fully decentralised algorithm that allows any agent to compute the final consensus value of the whole network in finite time using theminimumnumber of successive values of its own s...

متن کامل

Eigenvalues and Diameter

Let G be a connected graph of order n. The diameter of a graph is the maximum distance between any two vertices of G. In this paper, we will give some bounds on the diameter of G in terms of eigenvalues of adjacency matrix and Laplacian matrix, respectively.

متن کامل

Eigenvalues, diameter, and mean distance in graphs

It is well-known that the second smallest eigenvalue 22 of the difference Laplacian matrix of a graph G is related to the expansion properties of G. A more detailed analysis of this relation is given. Upper and lower bounds on the diameter and the mean distance in G in terms of 22 are derived.

متن کامل

The Steiner diameter of a graph

‎The Steiner distance of a graph‎, ‎introduced by Chartrand‎, ‎Oellermann‎, ‎Tian and Zou in 1989‎, ‎is a natural generalization of the‎ ‎concept of classical graph distance‎. ‎For a connected graph $G$ of‎ ‎order at least $2$ and $Ssubseteq V(G)$‎, ‎the Steiner‎ ‎distance $d(S)$ among the vertices of $S$ is the minimum size among‎ ‎all connected subgraphs whose vertex sets contain $S$‎. ‎Let $...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Automatica

سال: 2014

ISSN: 0005-1098

DOI: 10.1016/j.automatica.2013.11.034